
Journal of Statistical Physics, Vol. 43, Nos. 3/4, 1986 

One-Dimensional Harmonic Lattice Caricature 
of Hydrodynamics 

R. L. Dobrushin, ~ A. Pellegrinotti ,  2 Yu. M. Suhov, ~ and L. Triolo 3 

Received August 6, 1985; final December 5, 1985 

We derive the hydrodynamic (Euler) approximation for the harmonic time 
evolution of infinite classical oscillator system on one-dimensional lattice 2.1 It 
is known that equilibrium (i.e., t ime-invariant attractive) states for this model 
are translationally invariant Gaussian ones, with the mean 0, which satisfy some 
linear relations involving the interaction quadratic form. The natural 
"parameter" characterizing equilibrium states is the spectral density matrix 
function (SDMF)/O(0), 0 E [ - ~ ,  ~). Time evolution of a space "profile" of local 
equilibrium parameters is described by a space-time S D M F  F(t; x, 0) t, x e  R 1. 
The hydrodynamic equation for F(t; x, 0) which we derive in this paper means 
that the "normal mode" profiles indexed by 0 are moving according to linear 
laws and are mutually independent. The procedure of deriving the 
hydrodynamic equation is the following: We fix an initial S D M F  profile F(x, 0) 
and a family {P~, e > 0 }  of mean 0 states which satisfy the two conditions 
imposed on the covariance of spins at various lattice points: (a) the covariance 
at points "close" to the value g-ix  in the state P~ is approximately described by 
the S D M F  ['(x, 0); (b) The covariance (on large distances) decreases with dis- 
tance quickly enough and uniformly in e. Given nonzero t c R 1, we consider the 
states P~_~,, e > 0 ,  describing the system at the time moments e - i t  during its 
harmonic time evolution. We check that the covariance at lattice points close to 
e-Ix in the state P~ ~, is approximately described by a S D M F  f'(t; x, 0) and 
establish the connection between/~(t;  x, 0) and F(x, 0). 
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1. I N T R O D U C T I O N  

There has been in recent years intensive development and rigorous 
investigation of the problem of derivation of the kinetic (Boltzmann, 
Vlasov, Landau) and hydrodynamic (Euler, Navier-Stokes) equations 
from the Hamilton dynamics in a large (or infinite) particle system. The 
statement and first stages in the investigation of this fundamental problem 
were completed by Bogoliubov, Grad, Morrey, and Uhlenbeck et al. in the 
period from 1946 to 1955. The present state of the problem, including new 
results and methods on this topic, is discussed in review papers (1'2'3) to 
which we refer the reader for the details and explanations of the approach 
we adopt in this work. 

The "modern" point of view on the problem under consideration is 
that the above-mentioned equations may be naturally obtained in the 
course of special limit procedures involving some "scaling" of space, time, 
and interaction. In particular, notions of "macroscopic" and "microscopic" 
space- and time-variables are naturally arising; their ratio characterizes the 
inhomogeneity of the system and tends to infinity in the course of the 
corresponding limit. 

Therefore, kinetic and hydrodynamic equations should be regarded as 
specific approximations for the time evolution generated by a Hamilton 
dynamic. For instance, the Boltzmann equation may be obtained after so- 
called low density (Boltzmann-Grad) limit, (4) the Vlasov equation after 
mean field limit, (5"6) and so on. 

Hydrodynamic equations which are expected to be obtained in the so- 
called hydrodynamic limit procedure are of particular interest from 
mathematical and applicative points of view. These equations describe time 
evolution of a macroscopic space distribution (space profile) of "local 
equilibrium" parameters which are, in general, given by the three conserved 
quantities: the fluid mass density, velocity momentum, and internal energy 
(temperature) at (macroscopic) space point x. Therefore, the rigorous 
foundation of hydrodynamic approximation requires the proof of the fact 
that the Hamilton time evolution brings the state of the system "locally 
close" to equilibrium ones (by "state" we mean in this paper a probability 
measure on the phase space of the system under consideration). In par- 
ticular, this requires the proof of convergence to an equilibrium state for a 
wide class of initial states. However, such a problem seems to be, in 
general, beyond the reach of available mathematical tools. Hence, it is 
interesting to study "exact solvable" models of time evolution for which the 
convergence to an equilibrium state may be proven for large classes of 
initial states. 

The simplest model of such type (which leads to a trivial 
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hydrodynamics) is the free classical gas. However, this model is 
degenerated: the set of equilibrium states (i.e., time invariant states which 
are limiting ones for large classes of initial states) is much "richer" in this 
case than in the general case. It is characterized by a "functional" 
parameter instead of the finite set of the above-mentioned parameters. 

Similar features are peculiar for models which are connected with the 
free gas. One of such models, the one-dimensional hard rod model, has 
been studied. (7) The degeneracy of this model leads to an "exotic" 
hydrodynamics; this explains the term "caricature" used therein. 

This paper is devoted to another degenerate model, that of classical 
harmonic oscillators. This model, like the preceding degenerate ones, 
exhibits a "nonstandard" hydrodynamics: it continues the list of caricature 
models initiated in Ref. 7. As in Ref. 7, the authors think that the study of 
the "exotic" hydrodynamics for degenerate systems is useful for a better 
understanding of the "normal" hydrodynamics as limit behavior of realistic 
systems. 

We consider the system of classical "spins" with the single phase space 
R 1 x R 1 which are indexed by points of one-dimensional lattice Yl. The for- 
mal hamiltonian of the model is given by 

1 ~ p2+ • V(j, j) qjqi ' 
j , j '  ~ Z  1 

qj being the position (displacement) and pj the momentum for the spin at 
the point j e Z  1. The interaction between spins in our model depends on 
their displacements and is described by a translationally invariant 
quadratic form 

V(j- j ' )  qjqf 
j , j ' ~  7s 1 

We denote by (02(0), 0e  [ - ~ ,  ~z), the Fourier transform 

(02(0)= 2 exp(ikO)V(k) 
k ~ Z  1 

this iLs a real even function on [-7~, z), as V ( f - j )  = V( j - f ) .  
Convergence to equilibrium states for this model has been proven in 

Ref. 8: This is the starting point for our investigation. The limit states are 
translationally invariant Gaussian ones, with mean zero, which satisfy an 
"equilibrium condition": a linear relation involving the interaction 
quadratic form. This relation may be expressed in terms of the covariance 
of the displacement-momentum vectors y j =  (q;, &) for spins at various 
points j, j '  ~ Y 1 

Fj_;=((qjqj') (qJPJ')~ (1.1) 
\(P/q/,) (P/P/,)] 
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From the technical point of view it is more convenient to deal with the 
Fourier transform of the covariance, which is a complex (2 x 2) matrix 
function on [-~r ,  r0, and call spectral density matrix function (SDMF) 

F (0 )=  ~. Fkexp(ikO) (1.2) 
kE~ t 

By definition, the SDMF of an arbitrary translationally invariant state 
should satisfy a number of conditions. Namely, the diagonals ~1,1 and/~,2, 
corresponding to (qjqj,} and (p ;p j } ,  are nonnegative even functions on 
I - re ,  ~), and the off-diagonals/-1,2 and ~2,1, corresponding to (q;p;,} and 
( PsqJ' }, obey 

/ ~ 1 ' 2 ( - - 0 )  = /~'1'2(0) = /~ '2 '1 ( - -0)  = F 2 ' l ( 0 ) ,  0~: [ - -7c ,  7t] 

Furthermore, for any 0, the matrix F(0) is positively semidefinite. 
The equilibrium condition characterizes time-invariant SDMFs. They 

must be of the form 

= ( 1 . 3 )  
- -  ]~(0) (/)(0) 2 g ( O ) J  \ 

where ~ is a nonnegative even and/~ an odd, purely imaginary, function on 

Thus, according to a general point of view, the hydrodynamic 
equations in this model will describe the time evolution of a family of 
SDMFs depending on macroscopic space point x e ~1 (macroscopic space 
SDMF profile). In this paper we consider, as in [7],  only the Euler 
equation (zero-order approximation). The hydrodynamic limit procedure is 
performed in the following way. Given an initial macroscopic space SDMF 
profile {F(x, ' ) ,  X ~  1 } w e  consider a family of initial states P~, e > 0 ,  
which satisfies the following conditions: (a) for any x e R1 the covariance in 
the state P~ at (microscopic) points j , j ' e 2  1, which differ from e Ix by 
o(e 1), is approximately described (as e ~ 0) by the SDMF F(x, '); (b) the 
covariance in the state P~ at (microscopic) points j, j ' ~  77 1 vanishes when 
[ j - j ' [  ~ oo uniformly in e and quickly enough. 

Condition (a) means that the macroscopic inhomogeneity of the states 
P~, e > 0 (in the sense of the covariance) is described in the limit e ~ 0 by 
the initial SDMF profile {/~(x,-)}. Condition (b) is a sort of so-called 
"chaos" hypothesis; it leads to an asymptotical total independence of 
macroevents in different macroscopic space points. 

Now we "switch-in" the harmonic time evolution (with a fixed interac- 
tion not depending on e). Given nonzero t E ~1 (a macroscopic time 
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moment), we regard the states P~ ~t, e > O, which describe the system at the 
microscopic time e It. Our aim is to verify that for any x s ~  ~ the 
covariance in the state P~ 1, at points j, j ' s  ~ ,  which differ from e - ix  by 
o(e -1) is approximately described by a SDMF /`(t; x, .) and establish the 
connections between the evolved profile {/`(t; x, . )} and the initial one 
{&x, .)}. 

Our main result is that the family {/`(t, x, . )} satisfies the linear 
equation 

~F( t ;x ,O)=A(O)-~xF( t ;x ,O) ,  Oe [ - ~ ,  ~), 

where 

t , x ~ N  1, t r  

(1.4) 

(the group velocity matrix). For any x and nonzero t the matrix function 
/`(t; x, ") satisfies the equilibrium condition. The limiting value/`(0; x ,-)  is 
connected with the initial matrix/`(x,  .) by 

/~1'1(0; X, 0 )=  I{/VI'I(x, 0)-~- [1/(0(0) 2]/`2'2(x, 0)} (1.6a) 

/`1'2(0; x, 0) = i Im/`l"2(x, 0) (1. 6b) 

/'2'1(0; x, 0) = i Im/`2'1(x, 0) (1.6c) 

F2'2(0; x, 0 )=  1{(0(0)2/`1'1(x, 0)A7/`2'2(x, 0)} (1.6d) 

Notice that the map /`(x,-) ~ F(0; x , - )  realizes the "projection" of the 
initial SDMF /`(x,.)  onto the subspace of SDMFs satisfying the 
equilibrium condition. 

The solution of (1.4), (1.6a d) is given by the formulas 

/`1,1(/; X, 0) = 1{p1,1 IX -~ (D'(0)l, 0] -~-/`1,1 IX -- (Dr(0)t, 0] } 

+ [ 1/4(0(0)2] {/~z2 [x + co'(O)t, O] +/`2,2 [x - (0'(0)t, 0 ] } 

+ [1/2(0(0)] {Im/`1'2[x + (0'(O)t, O] 

- Im Fl'2[x - co'(0)t, 0] } (l.7a) 

Fl'2(t; x, 0 ) =  [i(0(0)/4] {Fl ' l[x + co'(O)t, O] - p1.1 I x -  co'(O)t, 0]} 

+ (i/4(0(0)] {/`2'2[x + (0'(0)t, 0] -/`2.2 [x -- (0'(0)t, 0] } 

+ i/2{Im/`l '=[x + (0'(O)t, O] 

+ Im P ' 2 [ x  - (0'(0)t, 0] } (1.7b) 

t 1 t0))  15) 
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/~2,1(/; X, O) ~-- - P ' 2 ( t ;  x, O) 

P2'2(t; x, O) = co(O) 2 Pro(t; x, O) 

(1.7c) 

(1.7d) 

Equation (1.4) (or equivalently formulas 1.7a-d) means that for any 
fixed 0e  I-re ,  re), F(x, 0), regarded as function of x e  N1 (the space profile 
for the "harmonic" 0), is changed in time independently of other harmonics 
0 '~  0. Physically speaking, we obtain the macroscopic picture of indepen- 
dently moving "normal modes" indexed by the pairs (x, 0). A normal mode 
(x,O) at the macroscopic time moment t is "moving" at points 
[x + co'(O)t, 0], transferring here the (transformed) matrix F(x, O) with the 
weight �89 

It is clear from above that the main object of our analysis is linear 
transformations of the SDMF family {F(x,.)}. For this reason the 
methods used here are reduced to a careful analysis of oscillating integrals. 
The one-dimensional case we consider is the simplest from the technical 
point of view; in many dimensions we expect that the picture is similar. 

The paper is organized as follows. In Section 2 we discuss some 
preliminary facts concerning the model. Section 3 contains the proof of the 
main result. In Section 4 we discuss the connection of the hydrodynamics 
with the first integrals of the harmonic motion. Finally, Section 5 deals 
with examples of families {P~, 5>0}  for which the above-mentioned con- 
ditions are fulfilled. 

2. N O T A T I O N S  A N D  P R E L I M I N A R Y  R E S U L T S  

We start this section with basic notations and notions (some of them 
already used in the preceding section). Throughout this paper we denote by 
Z 1, 7/~, ~1, ~+,  and C 1 the integer, nonnegative integer, real, nonnegative 
real, and complex numbers, respectively. The symbol Ix] denotes the 
integer part of x e R~. The Fourier transform of an/2-sequence {gk, k e 21 } 
is denoted by 

~(0)= ~ gkexp(ikO), 0 e [ - ~ , ~ z )  (2.1) 
k ~ Z  1 

The notation A d 7/1 means that A is a bounded subset of Z 1 and, as 
usual, A c is the complementary set of A. 

Hereafter we shall frequently deal with expressions written as sums, 
each term of which requires a separate analysis. If this is the case, we 
denote a single term by the corresponding formula number indexed by its 
order number. For example, (3.28)2 denotes the second term in (3.28). If 
one is speaking on an equality, we usually have in mind its right-hand side. 
The possible deviations from this rule are specified in the text. 
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We consider a double-infinite system of classical one-dimensional 
oscillators. It is assumed that the jth oscillator has the equilibrium position 
at the point j, j e Z  1. We denote by q j ~ l  and p j ~  the displacement 
from the equilibrium position and momentum for the j th  oscillator, respec- 
tively. The vector (qj, &)~ ~2 is denoted by yj, j ~  7/~. In many formulas it 
will be convenient to use an alternative notation: qj = y), pj = y2. 

Given A c Z j, we denote by Y'(A) the Cartesian product (~2)A. This 
will be the phase space for the system of oscillators labeled by indices j ~ A. 
A point y(A)~5((A) is a sequence {yj, j ~ A }  of vectors yjeR2. If A is 
bounded, Y~(A) may be regarded as the finite-dimensional Hilbert space 
with the usual scalar product. 

For a general A we endow 5~(A) with the product topology. Y'(A) 
becomes a Polish space. Denote by g~(A) the Borel ~ algebra of subsets of 
~(A): ~(A) is generated by functions 

y(A)~X(A)~-+yJ, j~A ,  ~ = 1 , 2  (2.2) 

If there will be no confusion, we denote the function (2.2) by y~ (or qj and 
&) as well; correspondingly, the vector function (y), y~) will be denoted by 
yj and the norm I-(y))2 + (y~)211/2 by [[YjH-If A is bounded, we denote by 
•A the Lebesgue measure on [Y'(A), ~(A)].  

Given AI, A2-~Z ~ where A ~ c A  2 and y/~2)e~'(A2), we denote by 
(y(Az))& the restriction of y(A2) onto A~. Given A1, A2 ~7/1 and 
y(A')~(Az), i--1, 2, where A1 c~A2= ~ ,  we denote by y(AOv y(A2) the 
sequence { y~, j ~ A ~ w A2 } determined by 

(y(A1)  ~/ y(A2))A i = y(Ai) i = 1, 2 

Sometimes we consider displacement sequences {qj, j ~  A} or {y), j~  A }, 
denoting them by q(A~ or (y~)(A). The configuration space for the oscillator 
system in A is the Cartesian product ~a; we denote it by f l (A) .  

In the case A = Z  ~ the index (A) is omitted from the notations we 
introduced above; the same convention is used in all that follows. The set 
Y" is the phase space for the whole oscillator system under consideration. 
Given A c 7/~, we can introduce the a subalgebra of ~ generated by (vec- 
tor) functions yj, j ~  A. There exists a natural isomorphism between this 
algebra and ~(A); we shall not distinguish these two a algebras using the 
same notation ~(A) and identifying the corresponding sets. 

A function f :  Y -~ ~1 is called cylindrical if it is ~(A)-measurable for 
some A ~ Y~. 

In the usual way one defines the action S~: Y" ~ Y', j 6  ~ of the group 
of space translations. By the same symbol S~ we denote the induced action 
on sets, functions, and measures. 
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Definition 2.1. A state P of the infinite oscillator system is a 
probability measure on the measurable space ( f ,  N). The space of states is 
endowed with the topology of the vague convergence. A state P is called 
translationally invariant if 

sjP=P 

The Rosenblatt mixing coefficient Up of a state P is defined by 

up(h)= sup sup ]P(Ac~B)--P(A)P(B)], heT] ~ (2.3) 
k E •  1 A c g # ( (  co ,k])  

B ~  ~ ( [ k  + h,oo)) 

The expectation w.r.t. P is denoted by ( )e.  Throughout this paper we 
consider states P with mean value 0, i.e.; ( y j ) p  = 0, j e  Z 1. The covariance 
(Y]Yf)e ,  J, j ' e  Z 1, will play a Special role in our analysis. 

If a state P is translationally invariant (in the wide sense), the 
covariance (whenever it exists) depends on j ' - j  

(ySyf>p=(F~r j , j ' ~Z  1, 7 , 7 ' = 1 , 2  

Thereby we obtain the sequence of covariance matrices F p =  {(Fp)~, 
k e Z  1 } 

F ' - - { (F~ l )k  (F~Z)k~ 

p,k-  t , ( & ' ) k  

If (F~,'~')k, keT/1, 7, 7 ' = 1 , 2  are 12-sequences, then, by passing to the 
Fourier transform, one introduces the spectral density matrix function 

= \ & , ( 0 )  

As already mentioned, the diagonals /~1, /~fi2 are nonegative even 
functions and off-diagonals p~2, ~ 1  obey 

P~2(-O)=p~2(O)=~I(-O)=~'(O),  Oe f - u ,  ~) 

Notice in addition that for any 0 the matrix Pp is positively semidefinite. 

Definition 2.2. A state P is called Gaussian if for any A ~ Z ~ the 
joint probability distribution of vectors yj, j e A, is Gaussian. In our case it 
will be uniquely determined by its covariance. 

From now on we shall always consider Gaussian states which are 
translationally invariant and have /2-covariance sequences {(F~#')k, 
keZ~}.  Every such state P has the SDMF/~p,  and the map P~-~ Fp is the 
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one-to-one correspondence between the states and matrix functions Fp 
satisfying the above-listed conditions (see, e.g., Ref. 9a). 

In particular, there are known necessary and sufficient conditions for- 
mulated in terms of the SDMF / 'e  of a Gaussian state P for Ctp(h) to 
vanish as h --* oo, and moreover for power or exponential decrease of ~e(h), 
see [9b]. Every Gaussian state P with 12-covariance sequences {(F~,7')~, 
k e  Z 1} is ergodic. (9a) 

Let a sequence q~= {q~(A), A ~ 7/1 } be given where ~/,(AI is a real 
measurable function 

y(A)e ~(A)  ~-+ ~(~)(y(A)) 

which is assumed to be even in the sense that ~(A)(y(A))=@(A)(__y(A)). 
Given A ~ E 1 and y(A)ef(A) ,  we denote 

(/*(~,A~)(y(A)[ y(A~))= lim ~ (1o(A)[(y(A))A~, 2 V (y(A'3)Ac~,2] (2.4) 
N~co fI~_[--N,N] 

Ar~A~Z 

If one interpretes @ as a "potential of interaction," then the value 
~p~,A~/(y(A/[ y(AC)) gives the full "energy" of the system of oscillators in A 
whose displacements and momenta are given by vectors yj, j E A, in the 
external "field" generated by the oscillators outside A with displacement 
momentum vectors Yk, k e A. In a similar way, by changing A ~ with A in 
(2.4) we can define the energy g*(~'~) for any pair of disjoint sets A & 7/~, 
/l  c g 1 (if/1 is bounded, then the limit on the right-hand side of (2.4) is not 
necessary). We define also the "proper" energy of the oscillator system in A 
by setting 

~r.t(tA)(y(A))= ~ ~(2)[(y(m))~] (2.5a) 
/~A 

We notice that (2.4) admits the following inversion 

~(A)(y(a)) = 2 (-1)Card(A\/~) ~r_/((/2)[-(y(A))3] (2.5b) 
~cA 

As usually, we say that the potential q~= {@(A), A ~ Z 1} is trans- 
lationally invariant if for any A ~ E1 and j e Z1 

(~)(A)(y(m))~-~(A+J)(Sjy(m)), y(m) 6 ~'(A) 

where A + j =  {keY1: k - j e A }  (this notation will be used below) and for 
y(A)= {Yl, l eA}  

SjY (A)={yl,y~'' '= y~_j, le A + j} 
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Definition 2.3. P is called a Gibbs state with the potential q~ if for 
any A ~ Z ~ (1) the limit ~m[y(A) l(Y)Ac ] exists for (~AXP)-a.a. pairs 
(y(A), y )e  Y'(A)x X and the integral 

.E'~[(y)A~]= fOZ(A ~eA(dy'(A))exp{-- ~P~'a')[y'(A)l(Y)A,]} (2.6a) 

is finite for P-a.a.y. The restriction on N'(A) of the conditional probability 
measure P[-IN(A~)](y) for P-a.a. y ~Y is given by 

p[A[N(AC)](y) = Z~[(y)Ac]-1 fA ~A(dy ' (a))exp{-  ~'AC)[y'(A)l(y)~, ] ] 

(2.6b) 

where ~A is the Lebesgue measure in ~'(A). 
After imposing certain restriction on q~ one can prove the existence 

and uniqueness (in some sense) of a Gibbs state with the potential q~. See 
Section 5 for further details. A Gaussian state P with the covariance matrix 
sequence {(Fe)k, k e Z  1} is a Gibbs state with the quadratic potential 

= q~e of the form 

qs(A)(y(A)) = 

, 

1 
t r - l~ ,v '  ,~ ,,~' if Card A = 1 

2 y y  1 2 ~ P  )0 . r j . , r j ~  

A = { j } ,  y(A)={yj} 

(Fgl)),,~j y~ yf  , if C a r d A = 2 ,  
7,?' = 1,2 

A= {j,j'}, y(A)= {yj, yf} 

if Card A >t 3 

(2.7) 

Here the sequences {(F~I)~ '~', kEZ1}, y, 7 '=  1, 2 are given by 

(F~' )~,~ = -~ ~ f_, dO[P~,'/(O) ] --1 exp(ikO), ksT/1 (2.8) 

(if the integral makes sense). 
Sometimes it is convenient to relate the Gibbs state P to the energy 

g t  rather than to the potential qs; this will be called Gibbs state with the 
energy function 7 t. 
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The harmonic dynamics of the oscillator system in A _c Z ~ is given by 
the solution of the Cauchy problem 

(tj(t) = pj(t) 

/ } j ( t ) = -  ~ V(j ' - j )  q;(t), tE~ 1, j~A (2.9) 
j'~A 

{ [qj(0), pj(0)], j ~  A } = y(A) (2.10) 

Here V: 2 ~ ~ ~1 is a fixed real function defining the harmonic interaction 
of oscillators. If A is bounded then the system (2.9) is finite and can be 
written in the hamiltonian form with the Hamiltonian 

1 [ ~  p~+ ~ V(j ,_j)  qyqy, l (2.11) 
H(a~=-2 j ~ A  j , j ' e A  

In the case where A is unbounded, (2.9) becomes infinite and H (A) is, in 
general, a formal expression. However, the right-hand side of (2.9) will con- 
verge whenever V(k) decreases quickly enough and qk(t) does not increase 
t o o  much as k-~ _+oo. We shall impose the following conditions on V 
taken from [8]. 

(i) V is an even real function: V(k)= V(-k),  k ~-Y 1. 
(ii) V has a compact support: V(k)= 0 for k >~ ko where ko > 0 is a con- 

stant. 

Conditions (i), (ii) guarantee that I? is a real analytic even function on 

(iii) V is positively definite: min0~ E . . . .  ) l)(0) > 0. 

Condition (iii) allows us to introduce the positive even analytic function 

(2)(0) ~- V(0) 1/2, 0 ~  [-Tr, z) (2.12) 

which plays an important role in our analysis. In what follows it will be 
convenient to use the function co rather than V. For instance, the next con- 
dition reads as 

(iv) co is nondegenerate: the set 

{0: co"(0) = co"(0) = 0} 

is empty. 
Notice that conditions (ii) and (iii) imply that the set 

{0: co"(0)= 0} 
is finite. 
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Conditions (ii), (iv) play a technical role and way be weakened. For 
instance, exponential decay of V(k) may be easily replaced by an inverse 
power. HoWever, we should retain the hypothesis that the set of critical 
points of co should be finite for the subsequent analysis of oscillating 
integrals. Instead of (iv) one may require that the set 

{0:  co"(0) . . . .  c o ' ) ( 0 )  = 0} = 25 

for some value of rneZ~+; see Ref. 10. However, technical difficulties 
increase tremendously. 

The system of differential equations (2.9) is linear 

(d/dt) y(A)(t) = B(A)y(A)(t) (2.13) 

whence we obtain the formula for the solution of (2.9), (2.10) 

y(A)(t) = exp(tB (A)) y(A)(0) (2.14) 

Here B (A) is the linear operator f ( A ) - - .  X(A) given by 

j ' eA  

If A is a bounded set, then the operator B (A) is bounded in f ( A )  and 
the formula (2.13) gives the unique solution to (2.9), (2.10). In the case A is 
unbounded one needs a more detailed analysis. We restrict our attention to 
A = Z 1. Given m e RI+, denote 

X ' ~ -  { y e f '  supllyjll2/(j2+ 1)m< oO} (2.16) 
j ~ 2  vl 

T h e o r e m  2.1 (see [11]). For any y e f ' ,  m e n  1,  there exists the 
unique solution y(t), t e ~1 to the problem (2.9), (2.10) such that y ( t ) e Y ' "  
for all t. This solution is given by the linear formula 

y](t) = • ~ u~,"/j(t)Yf, 7-=- 1, 2 (2.17) 
j ' E  //1 7 ' - -1 ,2  

The coefficients u~,~'(t) are defined by 

1 
U~k'l=u~'Z(t)=~ f ~ dOcos[co(O)t] exp(-ikO) (2.18) 

~2 dO[I/co(O)] sin[co(0)t] exp(-ikO) (2.18b) u; (t)=~ -,~ 

u~,~ _ 1 f~ dO co(O) sin[co(O)t] exp(- ikO)  (2.18c) 
2g 

the function co being defined in (2.12). 
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Correspondingly, 
matrix function 

Remark. Let y denote the 12-subspace of .g. Conditions (i)-(iii) 
imply that the generator B (see 2.13, 2.15) is bounded on y. The operators 
U(t) with the matrix elements U(t)Jf = uJ;~j(t) are nothing but exp(tB). 
Passing to the Fourier transform we obtain that the operator B in 
2 '2 ( [ -= ,  ~z))| 4 ( [ - ~ ,  rt)) is the operator of multiplication by the matrix 
function (0 

~(0)  = _co(0)~ 

U(t), t e n  * is the operator of multiplication by the 

U(t, 0 )=  ( cos[co(0)t] [1/co(0)] sin[co(0)t]) (2.20) 
\--CO(O) sin[co(O)t] cos[co(0) t] 

Denote 
~ ' =  [) ~';,~ (2.21) 

m > 0  

It is not hard to check that Y"e o~. The time translations 

T,: y e X' ~-* y(t), t e ~  1 (2.22) 

form a continuous group of measurable transformations of ~ '  onto itself. 
The induced action of this group on sets and functions is denoted by the 
same symbol T,. 

Definition 2.4. Let a state P be concentrated on the set .Of' 

P ( x ' )  = 1 

The harmonic time evolution of the state 
{Pt, t~g~l} given by 

P,(A ) = P[ T_t(A c~ f~')], 

(2.23) 

P is the family of states 

A ~ ~ (2.24) 

In the next part of this section we shall formulate assertions concern- 
mg some properties of the harmonic time evolution defined in (2.24). These 
assertions (Propositions 2.2 2.4 and Theorem 2.5) are taken from Ref. 8. 
For convenience we sometimes use simplified formulations. 

A convenient sufficient condition for (2.23) is given in the following 
assertion. 

P r o p o s i t i o n  2.2. Let P be a state such that for all j ~ g  1 

{llyj]]2)p ~< K(1 +j2)m (2.25) 
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where K > 0 and m > 0 are constants. Then P is concentrated on f '  and for 
any t e R 1 and all j e 7/1 

(II YsH 2 )P, ~< K(t)(1 + j2),, (2.26) 

with K(t)> 0 being a new constant depending on t. 
The covariance ~ 7' (Yh Yk )P, is given by 

2 
(y~y~')e= ~ ~. u~'~_l(t) u~'fl,(t)(y~y~')p (2.27) 

6,6' = 1 l,l'~7 vl 

An important question is to investigate the time invariant states, i.e., 
states P for which 

Pt=P, t e n  1 (2.28) 

Proposition 2.3. Let P be a Gaussian state with the SDMF Pp. 
Then the following statements are equivalent 

(i) P is time invariant 

(ii) the matrix tee is of the form 

tep(O) = ( g ( 0 )  /7(0) '~ (2.29) 
-/7(0) co(0)2 ~(0)) 

where ~ is an even nonnegative function and /7 an odd purely imaginary 
function on [ - ~ ,  ~). 

It will be convenient to characterize time-invariant Gaussian states 
from "Gibbsian" point of view. For simplicity, let us assume now that V 
has compact support. Given A d 221 and y(~)e ~(A), denote 

E(h,j;y(A))=�89 ], h, j e A  (2.30) 

A(h,j;y(A))=�89 ), h, j e A  (2.31) 

Here V = VA denotes the operator in ~ ( A )  which reads as 

(vq(A))J = E V(j ' - j )q f ,  j~A, q(A)~fl(A) 
j '~A 

By the same formulas, replacing y(A)El(A) by y e l  one may introduce 
the quantities E(h,j; y) and A(h, j; y), h, jE/7 ~. 

Proposition 2.4. Let P be a Gaussian state with l~-covariance 
matrix sequence {(Fe)k, ke22 ~} and nondegenerate SDMF tee: 
min0~ E . . . .  )det tep(0)> 0. Then P is time-invariant iff the energy function 
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~u= { 7~(A), A d ~1} corresponding to the quadratic potential 45 = {(p(A)} 
(see 2.7) is of the form 

gt(A)[y(A)] = ~ [E(h, j; y(A)) 2j h + A(h, j; y(A)) #j h] (2.32) 
h, j~  A 

where 2k and #~, k e 2 1  are the Fourier coefficients of functions J~l and 
f2: I - -n ,  n ) ~  C ~, respectively, which may be represented as 

r = 2  g L =  - 2  /~ (2.33) 

Here the functions ~ and/~ are as in Proposition 2.3 and the SDMF/~e  of 
the state P is given by (2.29). 

Formula (2.32) is interesting because of its connections with first 
integrals of the harmonic dynamics. Given k e 2r~ and y ~ Y', we set 

1 
e(k; y) = lim ~ E(h, h ~- k; y[--N,N]) (2.34) 

N ~ 2 N + I  N~<h~<U--~ 

1 
a(k; y) = lim ~ A(h,h+k;y[_N,N]) (2.35) 

N ~ o o  2 N +  1 N<~h<~N k 

whenever these limits exist. Let f 0  be the set of y ~ f for which the limits 
(2.34), (2.35) exist for all k e 7/1. It is possible to check that T t f ~  f 0  and 
that for any k ~ E  1, t e n  1 and y E f ' ~ f  ~ 

e(k; T,y) = e(k; y), a(k; T,y) = a(k; y) (2.36) 

It is not hard to give conditions on a state P under which the equality 
p(fO) = 1 holds. For instance, it suffices to require existence of the limit of 
expectation values 

1 
lim ~ (E(h, h + k; Y[-N,N]))P (2.37) 

u ~  2 N +  1 N<~h<~N k 

1 
lim Z (A(h,h+k;YE-N,N]))P (2.38) 

S ~ o o  2 N +  1 N<~h<~U k 

together with existence and boundedness of expectations (l[ YjH4+a)P for 
some ~ > 0 and appropriate decreasing of the mixing coefficient c~p(h) when 
h ~ oo (see Theorem 2.5 below). 

Notice that if P is time-invariant Gaussian with a nondegenerate spec- 
tral density matrix _f'p of the form (2.29), then 

@(k, " ) ) e =  g~, ( a(k; " ) ) p= hk (2.39) 

822/43/3 -4-13 
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where gk and hk, k e Z~, are the Fourier coefficients of functions ~ and/~, 
respectively. 

We now formulate a result on the limit behavior of time-evolved states 
P,, t ~ N  1, when t ~  _+oo. 

T h e o r e m  2.5. Let P be a state such that 

sup(llyjll4+a)e < oo (2.40) 
/c z t 

and 
y" h2o~e(h)6/(4+6) < oo (2.41) 

h ~ Z  1 

for some 6 > 0. Then state P, defined in (2.24) converges as t--* +00 to a 
Gaussian state G if for any ~/, y' = 1, 2 and j, j ' e 21 

lim ( yy y f )  = (F~7')j,_j (2.42) 
t ~  -Jc cx3 

Convergence in (2.42) may be verified in a variety of cases, including 
translationally invariant, periodic, and "almost" periodic initial states P. 

In order to simplify the arguments below we shall use the statement of 
Theorem 2.5 in the particular case 6 = 1. The set of states which satisfy 
(2.40) and (2.41) with ~ = 1 is denoted by ~.  

Finally, concluding this section we shall formulate technical lemmas 
which will be repeatedly used below. For  the proof of Lemma 2.6 see [8] ,  
Propositions A.2 and A.3, and Ref. 10, Lemma 2.2. The proof of Lemma 2.7 
i s  based on arguments used in the proof of Theorem 3.1 from Ref. 8 
(p. 132-133). 

kemma 2.6. Assume f g: E - ~ r , ~ z ) ~ R  1 are periodic analytic 
functions and the set 

{O: f"(O)= f" (O)=O} 

is empty. Let uy(t), y, t E ~  1 be defined by 

uy(t) = ~ J dO g(O) exp[iyO + i t f(0)]  
lg 

Then the following assertions hold: 

(i) There exists a constant c ' > 0  (depending on mino:j,,io)-olf"(O)l) 
such that for all t, y e R ~ 

luy(t)k ~<c'(1 + It[) 1/3 (2.43) 
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(ii) For  any ~ e (!, 1], there exists a constant c " =  c"(c 0 > 0 (depending 3 
on mino:F,,(ol=orf'"(O)[ as well) such that for all t, y e R  1 with 
min0:s,,(0~= o ]y - tf'(0)I > It[ = 

lu~(t)l ~ c"(1 + Itl) (z/4)(~+~) (2.44) 

(iii) Now let y ~ Y  1 and c>max0~E . . . .  /If '(0)] be fixed. Then for any 
c~ > 0  there exists a constant c " =  c ' (c~)>0 such that for all t~ R', 
y ~ Z  1 with lY[ >clt[ 

[ u y ( t ) l ~ c ' ( l + l y l )  -= 

In particular, bounds (2.43), (2.44) are valid for the motion coefficient 
u~,/'(t), t e  R ~, k e Z  ~, 7, 7 ' =  1, 2, defined by (2.18a-c). 

k e m m a  2.7. For  any fixed c > 0 the second moments are bounded 
uniformly in P ~ 3  with sup j~ ( l ly j l [5 )e~<c ,  t e  R 1 and h, k e Z  1. 

Moreover, the functions [ E ( h , h + k ; . ) ] s  and [ A ( h , h + k ; . ) ] " ,  
s , s ' = l ,  2, are "uniformly integrable": for every ~/>0 there exists 
b =  b(r / )>0 such that for all Pc23  with supj~z,<llyjl[5>e~< c, all t e n  I and 
h, k e Z  1 

< I [E(h, h+k; .)]s_ [E~(h, h+k; .)]Sl >p < ,  

<l[A(h, h + k ; . ) ] s '  [A(b~(h, h+k;.)]s' l>~,<r/ 

Here 

= E ( h , h + k ; . ) ,  if I E ( h , h + k ; ' ) t < b  
E(b)(h, h + k;-)  = 0, otherwise, 

and A (b)(h, h + k; �9 ) is defined in a similar way. 

3. THE H Y D R O D Y N A M I C  L IMIT  

In this section we treat the central issue of this paper. Consider a com- 
plex ( 2 x 2 )  matrix function F o n  R 1 x [ -Tr ,  re) 

(P',i(x, o) ~1,2(x, 0)~ 
P(x,O)=\pR,,(x,O) p2,2(x,O)7, x ~ ' ,  o e [ - ~ , ~ )  (3.1) 

with the following properties: 



588 Dobrushin, Pellegrinotti, Suhov, and Triolo 

(A) For every fixed x e ~1 and 7, 7 ' =  1,2, the function/6~'~'(x, 0) is boun- 
ded on [-Tt,  ~) and the inverse Fourier transform 

F~'~ ( x ) = ~  _ exp(-i0k)['~'~'(x, O) dO (3.2) 

satisfies the bounds 

]f~'~'(x)] ~<al exp( -ao]k l )  k E Z  1 

where a0, al are positive constants. 

(B) For every fixed x e N  1 the diagonals P ' l ( x , . ) ,  F2'2(x,.) are non- 
negative even functions and the off-diagonals Fl'2(x, �9 ), F2'l(x, .) obey 

/~l'2(X, --0)=/~l '2(X, 0) =/~2'1(X, --0)=/~2'1(X, 0) 0E~ [ - -~ ,  7~) 

(C) For fixed x ~ N  1 and 0 e [ - ~ z ,  Tc) the matrix [r(x,O) is positively 
semidefinite. 

(D) For every 0E [ - ~ ,  ~z), /~,~'(., 0), ~, 7 '=  1, 2 are C 1 functions and the 
functions 

( ) x ~ sup max IP'"'(x, 0)j. ~x P"~/(x, O) 

are bounded uniformly on bounded intervals. 

As noted above, conditions (B) guarantee that for any x e  R ~, F(x, ") is 
a SDMF for some (e.g., Gaussian) state. For this reason we call _F a space 
SDMF profile. It will play the role of the initial data for the hydrodynamic 
equations we derive. The space SDMF profile describes the "macroscopic" 
structure of the family of initial states. 

More precisely, we introduce the following definition. 

Defini t ion 3. 1. Let a family of states be given in terms of a 
parameter e > 0: {U, e > 0}. We call it a hydrodynamical family for _F if: 

(a) For any e > 0 there exists an even integer N~ such that: 
(i) for all ws  R1 and s, s ' ~ I ,  

y y' (y, ys,)e~.-F~'~'s,(~w)l ~ a l  m i n [ e x p ( - a o l s - s ' l ) ,  eN~] (3.3) 

where ao, a~ are the constants figuring in (3.2) and 

Iw = [w - • ~, W -'~ 1Ne]  o 7/1 (3.4) 

(ii) l im~oe2 /3N~= +oe and 3c~e (1, ~) such that 

lim Nee  (1/4)[c~+ (7/3)] ~. 0 (3.5) 
e~O 
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(b) For  any ~ > 0 and all s, s' e 7/~, ~, ~' = 1, 2 

I( ' "/' exp ( -ao l s - s ' l )  (3.6) Y,Yr ~al  

with the same constants ao, a~ as in (3.2). 

Remark. Condi t ion (3.3) means a kind of t ranslat ion invariance on 
an intermediate scale; it could have been expressed in a more  natural  (and 
equivalent) way by 

I(  Y~, Y{ )I,~- Fs_ ~,(gs)l ~< al min [exp( - a0 Is - s'[ ), ~ ]  

with a suitable f l e  (0, 1 ). 
As in the following explicit calculations it will be technically useful to 

part i t ion the microscopic lattice in intervals (blocks) we use the slightly 
more artificial formulat ion (3.3). 

In Section 1 we gave a comment  on condit ions (a) and (b). In par- 
ticular, from condi t ion (a) it follows that for any xE  N~ and l e 2 1  

l im< y~_Y ~ Y[~-~x?~' +,)~=F'/'/(x) 7,7 ' = 1 , 2  (3.7) 
~ 0  

It is not  hard to check as well that for any fixed x e ~ the Fourier  
transform 

Z ~ lY 1 7' y[~ .q y[~_~] +~>~ exp(ilO) (3.8) 
l E Z '  

converges to the funct ion/~ '~ ' (x ,  0) uniformly on [ - r t ,  ~). The main result 
of this section is the following 

T h e o r e m  3.1.  Let {P~, e > 0 }  be a hydrodynamica l  family of 
states for a space S D M F  profi le /~ which satisfies condit ions (A-D)  above. 
Then, for any x ~ R 1, 1 ~ Z 1, nonzero  t ~ N1 and 7, 7 ' =  1, 2 there exist the 
limits 

Fy#'(e, x) = lim < ,,~ ~ ,,~' ~ \ 
e ~ O  "v [ e -  x J  "v [e  x]+l/Pa-lt (3.9) 

Here P~, 7e N1 denotes the harmonic  time evolut ion of the initial state P~ 
(see 2.24). The Four ier  t ransforms 

['>'/(t,x,O)= ~ Fy,~'(t,x) exp(ilO), 0~[ -Tz ,  Tz) (3.10) 
l ~ Y '  

are given by the formulas (1.7a-d). 
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Proof of  Theorem 3. 1. For the sake of brevity we assume that t > 0 
and consider relation (3.9) for 7 =7  ' =  1; the other cases are treated in the 
same way. According to (2.27) we have 

(Y[,-~x3Y[,- 'xl+,)e: ~, 

E E 1,fi _ n(  ~ 1 / )  1,6' --1 6 6' = uE~-~3 uE~ ~ + t  ,,(e t ) ( y , y , , ) e ~  (3.11) 
6,6' = 1,2 n,n' e Z 1 

where the coefficients ul, a(t) are defined in (2.18a,b). It is convenient to 
introduce, for a fixed constant c > max0~ E -,-)I09'(0)1, the following set 

J ~ = J , ( c , t ) = { v ~ Z ~ : I ~ N c E - e  lct, e lct]} (3.12) 

The first step in the proof is 

Proposition 3.2. The following representation holds 

YE~-~x3 YE~ 1~3+,)e: 1,= ~ ~ ~ EL/L3(8 -1/) bl m,l'f'l(g+ lt) 
6,cS' = 1,2 v,v' ~ J~ m E lvNe, 

m' ~ [v'Ne 

�9 ( '~ '~' ) ~ ]  + G,(~, t) Y D - t x ]  m Y D  l x ] - m '  (3.13) 

where l ime~oe bGl(8, t ) = 0  for any b > 0 ,  t~R ' .  
The proof of Proposition 3.2 is an immediate consequence 

Lemma 2.6 (ii). The next step in the proof of Theorem 3.1 is: 

Proposition 3.3. The following representation holds 

of 

(3.13)1 = E E E 
6,6' = 1,2 v e J~ m,m' 6 lvNr, 

+ G2(~, t) 

u2?(~- l t )  1,~, , (~ - l t )  ( ~ ~' Hm'+ T i e  l x ] - m Y E e - l x ]  m ' ) e  ~ 

(3.14) 

where lim~ ~ 0 G2(e, t) = 0 for any t ~ ~'. 

Proof  of  Proposition 3.,3. The "intertwining" term G2(e, t) contains 
the external sums over pairs v, v'~Je with v Cv'. The pairs v, v' with 
Iv' - vl >~ 2 via Lemma 2.6(i) and relation (3.6), give the contribution of the 
order 

a l ( e N ~ ) - l  N e  82/3 E exp(-aos) 
s >~ N~-- Ill 

which vanishes as e--* 0 because of conditions (3.3) and (3.5). 
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In order to estimate the contribution of pairs of nearest neighbors v, v' 
we extract in every interval I~N, the "boundary zones" A+N~ of length [N~] 
where 2 e (0, 1) is chosen (see figure below). 

A + I  A 7 A + A ~  1 

I I I I i I I [-- 
) ( ) ( ) 

I~ 1 I~ [~+~ 

The addends 

him'+ Y [ ~ - ~ x ]  m Y [ ~ - l x ]  m ' ) P '  

I + m '  -v- where either m e  ~N~\A;-N~ or e l c N ~ \ A c N :  V ' - - V = - t - 1  give the con- 
tribution of the order 

al(eN~)  1~,/3 ~ exp(--aos) 
s~> [ N ~ ]  

while those with m e A +u,, ' ~ v' = m e Av,N~ , - - v  ___1 give the contribution of 
the order 

(eNd) : l  e2/3 N~:. = e 1/3 N~:~ - 

By relations (3.3) and (3.5) we may choose 2 in such a way that all 
bounds vanish when e--+ 0. Proposition 3.3 is proven. Now we use con- 
dition (3.3). 

Proposition 3.4. The following representation holds 

(3.14)~ = Z Z ~. {u:~(e-~t) u~:+,(~-~t) 
6,6' = 1,2 v ~ Je m , m ' ~  I, Nz 

"F~,6-m(e[e lx] - e v N ~ ) }  +G3(e, t) (3.15) 

and ]lim~o G3(~, t ) = 0  for any x, t e ~  1. 

,Proof  o f  P r o p o s i t i o n  3 .4 .  According to (3.3), the difference between 
6,3 '  1 ~ 16 1 6 '  F ~ , _ m ( e [ e  x ] - e v N ~ )  and :[~ x ] - m Y [ ~  l x ] - ,n ' ) t~  does not exceed in 

modulo 

al m i n [ e x p ( - a o ] m -  m'l), eN~] 

At fixed m we sum this quantity over m'. Using Lemma 2.6(i) we obtain 
that the sum is less or equal to 

Cl 1 ~I/3(gNe + eN~ Ilog eN~l) 
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Finally, according to Lemma 2.6(ii) for all m for which 

min ] m -  e-itco'(O)] > ltl% -~ 
0:co"(0) - 0 

the following bound holds 

lu~;~(e-lt)l < c " / ;  (1/4)(1 + a0 

(c" being independent on t as well). 
Taking all this into account we estimate 

IG3(~, t)l <<,~le-Xg, eN~(1 + [log eN~l)" (e -=+z/3 --~Neg 1/3+(1/4)(1+~)) 

and see that the choice ~ s (J, ~) guarantees that l im,~o G 3 ( g ,  t )  ---= 0. 
We now move on to study the first sum in (3.15). For the sake of 

brevity consider a single term in the external sum 52~,~, which corresponds 
to 6, 6 ' =  1. Let us denote the corresponding sum Z v~s~ ~,m,m'el,,N~ by 
(3.15)14. Using formula (2.18a) and the fact that co is an even function, we 
write 

' S f'. (3"15)1,1=~g2 2 Z dO dO, e-iEmO (m' 1)0'1 
v ~ J ~  m , m '  ~ l v N  e - - ~  

" cos[co(0) e- i t]  cos[co(0') e it] F~ 1 m(e[e-lx] - evN,) 

(3.16) 

Proposition 3.5. The following representation holds 

S.0;- (3.16) = ~-~~2 Z Z dO' e iU~176176 
v ~ Je m ~ IvN~ rc 

"cosrco(0)~; It] cos[co(0')~-i t]/s Xx- ] _ ~vN~, 0') + G4(~; 1 t) 

(3.17) 

where lim~_o G4(g, I ) = 0  for any t~ ~ .  

Proof of  Proposition 3.5. To prove the statement of Proposition 3.5 
one should repeat in the reversed order the construction based on 
Propositions 3.2 and 3.3. For  the sake of brevity we do not enter into 
details. 

In the next step of the proof of Theorem 3.1 we consider the sum 
(3.17)~. Performing the summation over m, we write 

1 ~-J~ ~. dO r~ dO' e ~'~ e,(~+~/21(o' O)N~_e~(V 1/2)(0'--0)Nc 
(3.17)1 = 4re------ 7 _ ei(O'- o) __ 1 

�9 cos[co(0)e lt]  cos[co(0')e l t]  Fl"l(e[e-lx] -evN~,  0') (3.18) 
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By replacing variables (0, 0') ~ (0 - q), 0) and the 2~r-periodicity of the 
inner integral, the right-hand side of (3.18) becomes 

1 ~ f~z dO fro d(4 9 e i l O e i ( v + I / 2 ) N ~ ~ 1 7 6  

492 v~ Je -- ~z zr e i~~ - 1 

�9 cos [oJ (O)e - l t ]  cos [co(0 -  q))e lt] Fl ' l(e[e Ix] - evN~, O) (3.19) 

Writing cos ( - )= �89  -i(~) we reduce the problem of evaluating 
the limit value of (3.19) to the problem of evaluating the limits of sums 
over v e J ,  of the four integrals 

I f ~ f n  ei(V + t / 2 ) N ~  - -  e i (v-1/2)N~cp 
1 ~ 2  dO eet~ +-i~176 1, dq) e i~~ - 1 

--7C -- )Z 

�9 e +-i~176176 ~ ' [ ' l ' l ( e [e - l x ]  - ev~N,,  O) (3.20) 

It is convenient to define 

Vo= ++_[co'(O)e-ltN~ < ] 

where the signs _+ are chosen to coincide with those of co(0-~o) in (3.20)�9 
We rewrite (3.19) in the form 

169z 2 d o e  iE'~176176 ~ + ~, + ~, 
--re -- v ff Je : v= vO_ 2 v ff je : 

v < v o - - 2  v~>vo+2 

ei(V + i /2)N~rp __ ei(V l / 2 ) N ~ p  

e~O_ 1 
e -+i~(~176 ~ ' / ~ 1 ' 1 ( / 3 [ ~ - 1 x ]  - ~vNe, O) 

( 3 . 2 1 )  

Now defining the function 

t( e ;~ - 1 ) - 1  icp, 

f (cP)=  I1, cp=0 
(pC0 

and substituting variables 

V = v o + h  
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we obtain 

1 7r 7r 
(3.21)--- ~ f_~ dO e i[z~ +o~(o)~ ~q f_,~ d(p f ( (p ) 

. ei[~oN~(p+~(o-~o)e lt] ~ + 2 
- - 2 < h :  h =  2 

vo -J- h ~ J~ 
h > 2 :  

vo+h~Je 

ei(h + 1/2)N~q~ _ ei(h 1/2)Ner p 

i~o 
Fl"l(eEe-lx] - evoN~ - ehN~, O) (3.22) 

The right-hand side of (3.22) is written as the sum of three terms 
corresponding to the sums in parentheses. 

The next statement may be considered the principal step in the proof 
of Theorem 3.1. 

Proposi t ion  3.6. The following relation holds 

lim (3.22)1 = lira (3.22)3 = 0 
e ~ 0  ~ 0  

Proof  of  Proposition 3.6. We consider in detail the sum (3.22)1; the 
other is treated in the same way. It is convenient to introduce the set 
K o = K y , ~ = ( J ~ - v 0 )  c ~ ( - o % - 3 ] c ~ 7 / 1 .  In order to perform the 
calculation we rewrite the sum in (3.22)1 in the following form 

1 ~K ~1 (ei(h+l/Z)Ue~O i(h(_)_l/2)Ne~ ~ 
16~2 h ~ t~o 

+ e-i(h( ~ 1/2)N~ _ e~(h-- 1/2lN~e)/-1,1(e[e-lx] _ evoN ~ _ ehN,, O) 

(3.23) 
where 

h( ~ = m i n [ k : h e K o ]  

Using a "discrete integration-by-parts formula" we find that (3.23) 
equals 

1 . 1  ~(e_i(5/2)N~ ~ -  e_i(h( ) 1/2)N~o) pl , l (e [e- ,x]  _ evoN ~ + 3eNd, O) 
16~ 2 i(p [. 

_jr_ ~ (ei(h+l/2)N~w_e i(h(_) 1 / 2 ) N ~ o )  

heKo:h< 3 

" {/f'l ' l(e[e-lx] -- evoN~ -- ehN~, O) 

- f ' l ' l ( e [ - e - l x ]  - evoN~ - e(h + 1 ) N ~ ,  0 ) 3  (3.24) 
J 
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Hence, we can write 

'F F 1(3.22)1r 16~ < ~ - -  dO sup d~o f(~o) e i(v~176176 
--7c h e K o  --~ 

. 1  (ei( h 1/z)N~o _ e - i ( h ( _ )  l/2)N~o) 

' t ~ IPa'a(~[e ix] -- evoN~-  ehN~, O) 
k 

h e K  o 

- -P ' a (e [e  l x ] - - e v 0 N ~ - - e ( h + l ) N ~ , 0 ) l  

+ IP,l(~[e ix] - e v o N ~ +  3eNd, 0)l} (3.25) 

The sum over h in (3.25) does not exceed the variation of P'~(-,  0) on 
the interval ( x - 4 -  ct, x + 4 + ct). This is bounded uniformly in 0 due to 
condition (D) imposed on F (see Section 3). Similary, the last term in 
parentheses is bounded uniformly in 0. Hence we need to show that the 
supremum in h in (3.25) tends to zero as e ~ 0 for any 0 e [ -~z, ~). For this 
we apply the following assertion (which will be repeatedly used below). 

Lemma 3.7. Under the stated hypotheses on the function co 
uniformly in 0 c  [ - ~ ,  ~) and k, k '6  ~1 with ]k[, Jk'J >2,  we have 

lim dq) f ( q ) ) e  i(v~176176176 ~') z-1 (ei~N~o__eik,N~o) 
~ 0  - ~  l ( p  

- ~e+-i~o(~ k - sgn k ' ) ]  = 0 (3.26) 

(The proof of this lemma will be deferred a few lines.) 
Thus, we conclude that the right-hand-side of (3.25) approaches zero 

when e ~ 0. We now move on to an investigation of the second term on the 
right-hand side of (3.22). We need another technical lemma which, along 
with Lemma 3.7, is proved below. 

L e m m a  3.8. Under the stated hypotheses on co and/~ we have 

(3.22)z=1@-~f~ f~ dOe~'~176 . . . .  ~'~Pl,~[xTco'(O)t,o] f ~ &o f(~p) 

. l (ei(5/2)Na(p e+ir ~p)_lt �9 e * ~ ~  - -  - -  e i(5/2)N~r "~- Gs(a, t) (3.27) 
i~p 
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where the sign in l~'~[x-T-co'(O)t, 0] is chosen to be opposite that which 
appears in front of co(0-(p) and l im,~o Gs(e, t ) = 0  for any t~ Rx. 

Using Lemma 3.8 and Lemma 3.7 we finish the proof of Theorem 3.1. 
In fact 

lim(3.27)1 = 1  lira f ~ dO e i[l~176176 1'3 Fl"l(x T-co'(O)t, O) e +_io)(o)~ I t 
e ~ O  81"/: e ~ 0 

The nonzero contribution is given in the cases of different signs in 
exponents. In these cases one arrives at the expression 

f ~ dO e it~ p ,x  Ix  -T- (o'(O)t, 0 (3.28) 

Putting these results in (3.19) we find that the limit of (3.15)~,1 is equal to 

l f~ dOei,O{p~,~[x_co,(O)t, O] + F~'~[x +co'(O)t, 0]} 
82"C --~ 

which is nothing but the inverse Fourier transform of (1.7a)1. 
In the same way one analyzes the other terms on the right-hand side 

of (3.15), which lead to other addends on the right-hand side of (1.7a). 
Now we must prove Lemma 3.7 and Lemma 3.8. 

Proof  of  Lemma 3.7. It is convenient to rewrite (3.26) in the form 

ire lira e -v-i~176 dq~ f(q~) e iEv~176176 

. 1  (e~kU~ ~ _ e~k,u~ ) = ~ ( s g n  k - s g n  k') 

Let's start with the following relations 

voN~ = co'(O)~-lt + c(O, t, e)N~ (3.28) 

where kc(O, t, e)[ < 1 and 

co(O-~o)=co(O)-co'(O)~o+h(O, ~o)~o 2 

where h(O, (p) is an analytic function such that h(O, O) = x ,, ~co (0). It turns out 
that we must evaluate an integral of the following kind 

f~ dqo e +-gh(~176 (f(qo)/cp)(e r +c~~176 - e i[k' +c(O't'~)]N~~ 
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Fix a number a e (0, ~z] and rewrite the integral under consideration as 
the sum of the three integrals related to the intervals I - n , - e ~ / 2 a ) ,  
[-e~/2a,  e~/2a], (e~/2a, ~z]. We denote these integrals I~, /2,  I3, respectively. 
As will be shown below, I 1 and 13 give the zero contribution when e ~ 0. 
For evaluating I2 we perform the changement of variables (p= e*/2z. We 
have the following equality 

I 2 = I ' 2 + I ;  ' 

where 
;o 

r2 = & ( e  +-~h(~ e •176176 f ( d / 2 z )  
--a Z 

�9 ( e i [ k  + c(O,t,e)] Negl/2z __ e i [ k  ' + c(O,t,e)] Na~l/2z) 

I j  = ~" dz e • ,,,(o,o)z=, f ( e  1/2z) ( e l i  k + c(O,,,c)] u~el/2z _ e i [ k '  + c(O,,,g)] N, cl/2z) 

o --a Z 

Obviously 

fo I1~1 ~< const Ih(O, ~ l /2z ) -h (O,  0)1 Izl dz 
a 

and the right-hand side vanishes as e --, 0 uniformly in 0 and in k, k'.  

i~,=al/2 f ~ dze+ih(O,O)z2 t 1 a el/2z I f (  e 1/2z) -- f ( O ) ]  

�9 ( e i [ k  + c(O,t,e)] N~el/2z _ e i [ k  ' + e(O,t,e)] Negt/2z) 

f~ 7 + f (O)  ~ dz e +-ih(O'O)z2' 1 (ei[k +c(O,,,e)]u~ei/2 z 

_ eiEk'+ c(o,,,~)] Ne~l/2z) (3.29) 

Now 

The first term on the right-hand side of (3.29) is vanishing as e ~ 0  
uniformly in 0 and k, k'. In order to evaluate the second one we must use 
the previous trick again 

( 3 . 29 )2  = ~ a  d z  ! (e + ih(O'O)z2t - -  1 ) ( e  iEk + ,.(o,t,a)] Nzgt/2z 
J - - a  Z 

_ ~,E,'+ c<o,,,< ~,~,,,z) + ~" az I (~,E, + ~<o,,,,~ ~,,,~,, 
O-- a Z 

_ else'+ c{o,,.)~ N~'/2=) (3.30) 
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The first term on the right-hand side of (3.30) vanishes as ~ ~ 0 via the 
integration by parts uniformly in 0 and k, k'. So we have to demonstrate 
that uniformly in 0 and k, k' 

lim (3.30)2 = rci(sgn k - sgn k') 
e ~ O  

This is a straightforward calculation. Let F + denote the upper ( + )  
and lower ( - )  semicircumference of radius a centered at the origin and 
oriented from a to - a .  Due to the analyticity of the integrand in (3.30)2 

fr  leiEk+c(O'"*)?u~'~I/2z--I dzl_eiEk'+c(o,~,~)3N~'/2~ (3.30)2 = d z -  (3.31) 
z :r + z 

Since ]kl, Ik'l > 2 and [c(O, t, e)l < 1 

sgnk=sgn[k+c(O,  t, e)], sgnk '=sgn[k '+c(O,  t, e)] 

Let us assume first that sgn [k+  c(O, t, e)] = s g n [ k ' +  c(O, t, e)]. We 
choose, in the right-hand side of (3.31), F + if sgn= +1 and F a if 
sgn = -1.  Using integration by parts it is easy to see that in both cases 
both integrals do not exceed const N~le-1/2 and hence, vanish as e ~ 0 (see 
3.5). Moreover, the constant is bounded uniformly in 0 and k, k'. 

Finally, if sgn[k+c(O, t, e)] r  t, ~)], we use either the 
formula 

fF a 1 ei[k +e(O,t,e)]N~e)/2z_~_ f dz  1 ei[k +c(O,t,~)]N~el/2z }_ 21~i d z -  - " 
z Jr 2 z 

or a similar formula replacing k by k'. The result follows immediately. 
We now move on to the estimation of 11 and [3- For the sake of 

brevity, consider in detail the integral I1; /3 has essentially the same 
behavior. Observe that it is enough to show that 

f-"~l/2dq f ( P )  lim e i[+h(O'q))q~2e-lt+kN~~ = 0 (3.32) 

uniformly in k with ]k[ > 1 and O~ I - n ,  ~). 
Integrating by parts we obtain that the integral in (3.32) is equal to 

ikN~l [ f T )  q a~1/2_~ 
ei[ + h(O,(p)~p2e-tt + kNe~o] J 

ikN~ f ~ d~o e ikN~~ ~ e +-'h(~176176 ~ f  ) (3.33) 
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The term (3.33)~ vanishes via (3.5) uniformly in k and 0. The second term 
on the right-hand side of (3.33) becomes 

1 f -- a~ 1/2 
ikN~e-_~ d o e i [ kN~e•176176  Mf(q))[+ih;(O, ~o) (ot+2ih(O, tp)t] 

1 C --aal/2 f '  (~o ) ei[kN~o ++ h(O,q~)~o2 e it ] 
~0 

ikN~f 1 -~-a#2 dcp f(cP___~)er 2 ~tl (3.34) 

To estimate the first term on the right-hand side of (3.34) we notice 
that, according to the definition of the function h and condition (iv) on the 
function co (see text following Definition 2.3), the set 

d2 d 3 } 
~0: d~o--- ~ [h(0, ~o)~o ~] =2-~@ [h(0, ~o)~o ~] = 0  

is empty. Hence, due to Lemma 2.6(ii), the term (3.34)1 is less than or 
equal to const. (1/lk I N ~ ) .  e 1/3 which vanishes as e ~ 0 in view of (3.5). The 
constant is uniformly bounded in 0. 

The remaining terms on the right-hand side of (3.34) are estimated by 
using a straightforward bound of the integrand and do not exceed, respec- 
tively, const Iln e[/N~ and const. 1/~l/2N~. Both bounds vanish as ~--* 0 due 
to (3.5) and both constants are uniformly bounded in 0. This completes the 
proof. 

Proof of Lemmo 3.8. By using the inequality 

[ (e[e - l x ] -evoN~-ehN~)  - [x~co'(O)t]] ~<e(1 + 5N~) 

which follows from the definitions of v o (see (3.28)) and from the bound 
Ih[ ~< ~ and the smoothness properties of/~'~'(x, ") (see condition D). We 
conclude that 

2 ~ d O f  ~ [Gs(e, t)[ <~ const e(l + 5N~) ~ f d~o f(~~ 
h =  - 2  - ~  ~ iq)  

. ei[voN~.q~+_o)(O - ~ o ) e - l t ] ( e i ( h  + l /2 )Ne(o  __ e i ( h  - 1/2)N~cp) (3.35) 

The problem is reduced to estimating the integral ~ dq) in a single term 
on the right-hand side of (3.35). We rewrite it as the sum of three integrals 
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related to the intervals E-Tr, -~),  E-e,  ~], and (e, re]. We again denote 
these integrals I1, I2, 13, respectively. The integrals 11, 13 do not exceed 

2 &o If(~o)l/~o~const Ilnet 

and the integral I2 is bounded by 

f~ de If(~o)/~ol - ~ eN~ lei(h+ 1/2) Nz~p e i (  h 1/2)Neqo] const. 

Substituting this into (3.35) gives the result in view of (3.5). 

4. LOCALLY CONSERVED QUANTITIES 

We have seen from Proposition 2.4 that time-invarlant Gaussian states 
may be characterized by means of the quantities E and A (see 2.30, 2.31) 
which generate the first integrals e and a (see 2.34, 2.35). We study in this 
section the "locally conserved" quantities X~ and Y~ which are introduced 
in the following: 

Defini t ion 4. 1. Let q~: @~ ~ ~1 be a C 1 function. We set 

X~(q~; y)  = e ~ r E(h, h + k, y)  
h~/71 

Y~,(q~; y)  = e ~ ~p(~h) A(h, h + k, y)  
h e Z  1 

(4.1) 

(4.2) 

T h e o r e m  4.1. Let a matrix function /" be given for which con- 
ditions (A)-(D) of Section3 hold. Let {P~, e>0}  be a hydrodynamic 
family of states for F. Then, for any q~ e C~(N1), k �9 ~1, and nonzero t �9 R1 
there exist the limits 

. . . .  - E �9 t) (4.3) lim(Zk(~P, )>e  ~,-- k(q ~ 

lim < Y~,(q0; .)>p~ 1,--- Ak(CP; t) (4.4) 
~ 0  "- 

The Fourier transforms 

E(cp; t, 0)= ~ Ek(~o; t)e ik~ A(~o; t, 0)= ~ Ak(q~; t)e ik~ 
k ~ Z  1 k c Z  I 
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are given by 

/~(@; t, O) =~ f dx ~(x)rce(o)  2 ~1,1(l; X, O) -Jr- fi'2'2(t; X, 0)] 

M((~); L O)~-~ f dx f49(X)[~1,2(/; X, O)- ~2,1([; X, 0)] 

(4.5) 

(4.6) 

where/6~'~'(t; x, 0), 7, 7 ' =  1, 2, are defined in (3.10a-d). 
The proof of Theorem 4.1 is based on the Lebesgue-dominated con- 

vergence theorem and Theorem 3.1. The key remark is that the expec- 
tations 

(E (h ,h+k; . ) ) ,~_ , ,  (A(h,h+k;.))p~_~, 

are bounded uniformly in e > 0 and h, k e 21 (see Lemma 2.7). 

The limit values E~(q); t) and Ak(~0; t) coincide with 

(4.7) 

Remarks (1). 
the integrals 

& ~o(x)(E(O, k;-))~,,~ 

and 

dx q)(x)( A(O, k; " ) ) a,. (4.8) 

respectively. Here G,,x denotes the Gaussian state with the S D M F  ['(t; x, .). 

(2) From (4.5) and (4.6), together with (1.Ta-d), it follows that /) 
and d satisfy the equations 

E(~0; t, 0) = -ice'(O) ce(0) A((p'; t, 0) 

0 .ce'(O) 
OZ d(e ;  t, O) = ~ ~ ~(q,'; t, O) 

(4.9) 

(4.10) 

(cf. 1.4 and 1.5). 
Our aim in this section is to prove a stronger result: 

Theorem 4.2. Let the conditions of Theorem4.1 be fulfilled. 
Assume in addtion that every state P~c~B (see Lemma2.7) and 

822/43/3-4-14 
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sup~>o supj~z,<lly/15>/~< o9. Then, for any q>O, ~oeC~(R1), kr 1 and 
nonzero t 6 R1 

lim P~ ~,{IX~(cp; ' ) -Ek(q) ;  t)l < t / }  = 1 
~ 0  

lim P~_,t{lY~k(q~; ")--Ak(~0; t)l <r /}  = 1 
~ . ~ 0  

(4.11) 

(4.12) 

Before giving the proof of Theorem 4.2 we formulate an assertion 
(Theorem 4.3) which gives a somewhat stronger result than Theorem 3.1. 

T h e o r e m  4.3. Let the conditions of Theorem 4.2 be fulfilled. Then, 
for any x ~ ~ and nonzero t ~ ~1, the states S_ [~ ~x3 P~_t,, e > 0 converge, 
as e--* 0, in the vague topology, to the Gaussian state G,.~. Moreover, for 
every bounded I~, I~ & Z a t h e  distributions and expectations of the 
absolute values of the centered sums 

~i ~ (E(h, h+k; . ) -  <E(h, h+k; 
ltx 

h 1 k~12 
(4.13) 

~ (A(h,h+k;')-(A(h,h+k;')>s_to-~xle~_t, 
h~I i  kc12 

w.r.t, states S_F~ ,x3P~_~t converge, as e ~ 0, to the distributions and expec- 
tations of the absolute values of the limiting centered sums 

~ (E(h,h+k;')-<E(h,h+k;')>a,.x) 
h~l l  k ~ l  2 

(4.13') 

I Y', ~ (A(h+k;.)-(A(h,h+k;.)>G,.~) 
h~I t  k r  

w.r.t, the Gaussian states G,,x. This convergence is uniform in x within any 
fixed bounded interval of ~1. 

The proof of Theorem 4.3 is based on a combination of arguments 
used in Ref. 8 and in Section 3 of this paper. The most delicate point is to 
prove the convergence of the random variable (4.13) to (4.13'). Here one 
uses the assertion of Lemma 2.7. (For the sake of brevity we do not supply 
the details.) 

Proo[ o[ Theorem 4.2. For the sake of brevity we discuss the 
relation (4.11): similar arguments apply to proving (4.12). To prove (4.11) 
it suffices to demonstrate that 

lim < I Yf-~(qg; ') - Ek(cp; t)l >e: ~, = 0 
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or, in view of Theorem 4.1 

lim(t k(q0,. )-(Xk(~o,'  ))p2 ,,I)p~_, =0  
e ~ 0  " �9 

(4.14) 

Let L be a positive integer to be chosen later. We rewrite (4.1) in the 
form 

1 ( n + l ) L - - 1  
X~(cp;y)=~L 2 ~ ~ qo(eh) E(h,h+k;y) (4.15) 

h ~  1 h = n L  

and estimate 

1 ( n + l ) L _  1 

<<.eL Z ~ ~o(eh)[E(h,h+k;.) 
n ~ Z  t h ~ n L  

(4.16) -(E(h'h+k;')>P2-"] e: ,, 

Furthermore, in view of the smoothness properties of q) and the uniform 
boundedness of (iE(h, h + k ; ' ) l  >e~_~, a > 0 ,  h, k E Z  1 (see Lemma 2.7) 

r.h.s, of(4.16)<~eL ~, fq~(ehL)[ 
h ~ Z  1 

�9 ~ (E(h ,h+k; . ) - (E(h ,h+k; . ) )eT_, )  +L.O(e) 
h = nL pe 

(4.17) 

Now, according to Theorem 4.3, for any fixed x, t and L 

lim ~ (E(h, h + k; ") - (E(h, h + k;" ) 
e ~ O  E h = [ e _ l x  ] p~ 

= 2 (E(h,h+k;.)-(E(h,h+k;.))~,) (4.18) 
h = 0 Gt,x 

and the convergence is uniform in x e supp cp. Hence, for any L/> 1 

lim sup (r.h.s. of 4.16) <~ f dx I~o(x)l �9 (r.h.s. of 4.18) (4.19) 
e ~ 0  

Now we have to prove that the right-hand side of (4.19) vanishes as 
L ~ oo. In view of the Lebesgue-dominated convergence theorem, it is suf- 
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ficient to check that the right-hand side of (4.18) vanishes as L ~ oo for 
any fixed x~  NI and nonzero t e  N1, and that it is bounded uniformly in 
x e supp q). The latter assertion follows from the estimates 

(i ) r.h.s, of (4.18) ~< 2 IE(h,h+k;)l +l(E(h,h+k;.))G,.,I 
h = 0 Gt,x 

~< 2(  [E(h, h + k;-)[ )G,,x ~< const (11YjH 2 )G,.x 

= const ~--~ dO[P~'~(t;x, O)+['a2(t;x, 0)] 

and from formulas (1.7a,d) and condition (D) on the initial matrix function 
F(x, 0) (see Section 3). 

The convergence of the right-hand side of (4.18) to zero follows from 
the ergodicity of the state G,,x. 

5. FAMILIES OF INITIAL STATES SATISFYING THE 
CONDITIONS OF THEOREMS 3.1 AND 4.2 

In this section we discuss examples of families {U, ~ > 0} satisfying the 
conditions of Theorems 3.1 and 4.2. Such examples are provided by the 
theory of Gibbs states. For the sake of simplicity we impose assumptions 
on the potentials stronger than those which are necessary for our construc- 
tions; this allows us to use results and methods of some previous papers. 
Possible ways to generalize our statements are briefly mentioned in the end 
of the section. 

Let q~(x, y), x e N1, y = (q, p) ~ ~1 X ~ l  be a real function of the form 

q~(x, y) = ~ol(y) + ~02(x, y) 

where (A) for any s > 0 

f dy(1 + l] Yll )s qol(y) exp[ -Sq)l(y)]  < oo (5.1) 

and (B) q)2 is of class C t in the variables x and is bounded together with 
the derivative (0q~z/~X) uniformly in x e ~ and y ~ R~ x N~. 

We consider the potentials 45~={q~A),A d Z l} satisfying the 
following assumptions: 

(1) ~ is a potential of finite range: there exists do (which does not 
depend on e) such that ~(A)= 0 whenever 

l(A) = max l J1 - Jz l  ~> do (5.2) 
j l , J2  ~ A 
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(2) 
bounded 

by 

The family {q~(A), card A ~> 2} is translationally invariant and 

(3) 

sup I~(A)(y(A))I < oe (5.3) 
A & Z ; c a r d A  >/2 

y(A) e .~'(A) 

The "one-particle" part {q~J), j E 2~ ~ } of the potential ~ ,  is given 

qb~J)(y)=(p(ej, y), y@~l• (5.4) 

Notice that for any fixed x~ Ni we have a translationally invariant 
potential ~ = { ~u~), A ~ Y~} defined by 

i q~(x, y), 
if c a r d A = l , A = { j } , y ~ A ) = y  (5.5) 

if card A ~>2 (5.6) 

Proposition 5.1. Given x~ ~ there exists the unique Gibbs state 
Q~ corresponding to the generating potential ~ .  The state Q~ is trans- 
lationally invariant and has all the moments 

(lIyjllS)Q<oo, s>0 (5.7) 

which are of class C J, as functions of x e  ~ .  
The proof of Proposition 5.1 follows from arguments and methods 

developed in the series of papers (~% on one-dimensional systems of classical 
statistical mechanics. The only difference between Proposition5.1 and 
theorems from Ref, 12 is that we consider now the system with the non- 
compact spin space N~x N1. However, condition (B) and (1), (2) give a 
possibility to introduce a "compact function" on N~x ~ and thereby to 
use the compactness argument in a modified from (see, e.g., the series of 
papers of Ref. 13). 

Now we set 

~',' (5.8) F~, ( x ) = ( y ~ y ~ ' ) G  , 7 ,7 '=1 ,2 ,  x e R  ~, k ~ Y  ~ 

P"~'(x, 0)-- ~ ['~,:"(x)exp(ikO), 7 , 7 ' = l , 2 ,  x s N  1, 0 ~ [ - ~ , r c )  (5.9) 
k e ~  ~ 

T h e o r e m  5.2. Let a family of potentials {q s ,  e > 0} be given which 
satisfy conditions (1)-(3). Then for any e there exists the unique Gibbs 
state P" corresponding to ~ .  The family of states {P~, e > 0} satisfies the 
conditions of Theorems 3.1 and 4.2 with the SDMF P given by (5.8) and 
(5.9). 
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The proof of Theorem 5.2 represents a modification of arguments and 
methods from Ref. 12. Apart from technical details, which are omitted, we 
give a short sketch of the proof. Assumptions (1) and (2) give the existence, 
uniqueness, and mixing property of the Gibbs state P~ while assumption 
(3) (together with 1 and 2) assures that the state P~ satisfies condition (a) 
of Definition 3.1. The principal difference from the arguments from 
Ref. 12a-d is that we now deal with nontranslationally invariant potentials 
and state. This is, however, avoided by using "uniform" ergodic (contrac- 
ting) properties of operators defined by conditional probability dis- 
tributions of the state PL (~2) Condition(l)  may be weakened to an 
assumption of exponential decreasing for the "norm" 

sup LI~)II 
Zl & ~ _ l : c a r d A  - -  n 

as /7--+00 

In condition (2) the assumption that q~(A) depends on e may be adopted. 
Then we should reformulate condition (3) not only for the single-spin part 
{qs~J)} but for all ~b (A) that are nonzero. Hence, in addition to the function 
q~(x, y), we consider a family of functions q)(AI(X, y(n)), A & Z 1 which, for 
fixed x, are translationally invariant. The state Qx will be defined as the 
Gibbs state corresponding to the generating potential q~(x)= {~o(A)(x, .), 
A &Z1}. 

We must remark that a very hard analysis is required by dropping the 
condition that potentials q~, are bounded and of finite range. We will not 
go into details: the theory of Gibbs states (even for translationally 
invariant pair potentials) is not yet developed sufficiently. Some results are 
given in Ref. 14. 
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